Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Viruses ; 13(11)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34835013

RESUMO

Human papillomaviruses (HPV) are non-enveloped DNA viruses infecting cutaneous and mucosal squamous epithelia. Sexually transmitted HPV-types that are carcinogenic to humans such as HPV16 can induce cervical and other anogenital cancers. Virus transmission through fomites such as inadequately disinfected gynecological equipment is a further potential transmission route. Since HPV cannot be easily grown in cell culture, polyomavirus SV40 has been used as a surrogate virus when testing the virucidal activity of chemical disinfectants. So far, studies that have compared the virucidal activity of different disinfectants against HPV and SV40 are lacking. Here, we evaluated the susceptibility of HPV16 pseudovirus and SV40 to seven active biocidal substances using quantitative suspension tests. Ethanol, glutaraldehyde (GTA), dodecyldipropylentriamin (DPTA), and ortho-phthalaldehydes (OPA) were able to reduce the infectivity of HPV16 pseudovirus >99.99% after 5 min. In contrast, isopropanol, peracetic acid (PAA), and quaternary ammonium compounds with alkylamines (QAC) only led to a slight or no reduction in infectivity. Concerning SV40, only GTA (60 min contact time), PAA, and OPA had virus-inactivating effects. In conclusion, the virucidal activity of three out of seven disinfectants tested was different for HPV16 pseudovirus and SV40. In this study, SV40 was shown to be a reliable surrogate virus for HPV when testing isopropanol-, GTA-, QAC-, and OPA-based disinfectants.


Assuntos
Alphapapillomavirus/efeitos dos fármacos , Desinfetantes/farmacologia , Polyomavirus/efeitos dos fármacos , Inativação de Vírus/efeitos dos fármacos , Desinfecção/métodos , Etanol , Células HEK293 , Papillomavirus Humano 16/efeitos dos fármacos , Humanos , Papillomaviridae/efeitos dos fármacos , Saúde Pública , Vírus 40 dos Símios/efeitos dos fármacos
2.
Rev Med Virol ; 31(6): e2220, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33729628

RESUMO

Human polyomaviruses (HPyVs) encompass more than 10 species infecting 30%-90% of the human population without significant illness. Proven HPyV diseases with documented histopathology affect primarily immunocompromised hosts with manifestations in brain, skin and renourinary tract such as polyomavirus-associated nephropathy (PyVAN), polyomavirus-associated haemorrhagic cystitis (PyVHC), polyomavirus-associated urothelial cancer (PyVUC), progressive multifocal leukoencephalopathy (PML), Merkel cell carcinoma (MCC), Trichodysplasia spinulosa (TS) and pruritic hyperproliferative keratinopathy. Although virus-specific immune control is the eventual goal of therapy and lasting cure, antiviral treatments are urgently needed in order to reduce or prevent HPyV diseases and thereby bridging the time needed to establish virus-specific immunity. However, the small dsDNA genome of only 5 kb of the non-enveloped HPyVs only encodes 5-7 viral proteins. Thus, HPyV replication relies heavily on host cell factors, thereby limiting both, number and type of specific virus-encoded antiviral targets. Lack of cost-effective high-throughput screening systems and relevant small animal models complicates the preclinical development. Current clinical studies are limited by small case numbers, poorly efficacious compounds and absence of proper randomized trial design. Here, we review preclinical and clinical studies that evaluated small molecules with presumed antiviral activity against HPyVs and provide an outlook regarding potential new antiviral strategies.


Assuntos
Antivirais/uso terapêutico , Polyomavirus/efeitos dos fármacos , Vírus de DNA , Humanos
3.
J Infect Dis ; 224(7): 1160-1169, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32060513

RESUMO

BACKGROUND: Human polyomaviruses can reactivate in transplant patients, causing nephropathy, progressive multifocal leukoencephalopathy, Merkel cell carcinoma, pruritic, rash or trichodysplasia spinulosa. Sirolimus and related mechanistic target of rapamycin (mTOR) inhibitors are transplant immunosuppressants. It is unknown if they directly reactivate polyomavirus replication from latency beyond their general effects on immunosuppression. METHODS: In vitro expression and turnover of large T (LT) proteins from BK virus, JC virus (JCV), Merkel cell polyomavirus (MCV), human polyomavirus 7 (HPyV7), and trichodysplasia spinulosa polyomavirus (TSV) after drug treatment were determined by immunoblotting, proximity ligation, replicon DNA replication, and whole virus immunofluorescence assays. RESULTS: mTOR inhibition increased LT protein expression for all 5 pathogenic polyomaviruses tested. This correlated with LT stabilization, decrease in the S-phase kinase-associated protein 2 (Skp2) E3 ligase targeting these LT proteins for degradation, and increase in virus replication for JCV, MCV, TSV, and HPyV7. Treatment with sirolimus, but not the calcineurin inhibitor tacrolimus, at levels routinely achieved in patients, resulted in a dose-dependent increase in viral DNA replication for BKV, MCV, and HPyV7. CONCLUSIONS: mTOR inhibitors, at therapeutic levels, directly activate polyomavirus replication through a Skp2-dependent mechanism, revealing a proteostatic latency mechanism common to polyomaviruses. Modifying existing drug regimens for transplant patients with polyomavirus-associated diseases may reduce symptomatic polyomavirus replication while maintaining allograft-sparing immunosuppression.


Assuntos
Replicação do DNA/efeitos dos fármacos , Inibidores de MTOR/farmacologia , Polyomavirus/efeitos dos fármacos , Proteínas Quinases Associadas a Fase S , Sirolimo/farmacologia , Replicação Viral/efeitos dos fármacos , Vírus BK , DNA Viral , Humanos , Vírus JC , Poliomavírus das Células de Merkel , Polyomavirus/genética , Infecções por Polyomavirus/tratamento farmacológico , Serina-Treonina Quinases TOR , Tacrolimo/farmacologia
4.
Microbiol Immunol ; 64(12): 783-791, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32965709

RESUMO

JC polyomavirus (JCPyV) is a common human pathogen that results in a chronic asymptomatic infection in healthy adults. Under conditions of immunosuppression, JCPyV spreads to the central nervous system and can cause the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML), a disease for which there are no vaccines or antiviral therapies. Retro-2 is a previously identified small molecule inhibitor that was originally shown to block retrograde transport of toxins such as ricin toxin from endosomes to the Golgi apparatus and endoplasmic reticulum (ER), and Retro-2.1 is a chemical analog of Retro-2 that has been shown to inhibit ricin intoxication of cells at low nanomolar concentrations. Retro-2 has previously been shown to prevent retrograde transport of JCPyV virions to the ER, but the effect of Retro-2.1 on JCPyV infectivity is unknown. Here it is shown that Retro-2.1 inhibits JCPyV with an EC50 of 3.9 µM. This molecule inhibits JCPyV infection at dosages that are not toxic to human tissue culture cells. Retro-2.1 was also tested against two other polyomaviruses, the human BK polyomavirus and simian virus 40, and was also shown to inhibit infection at similar concentrations. Viral uncoating studies demonstrate that Retro-2.1 inhibits BKPyV infectivity in a manner similar to Retro-2. These studies demonstrate that improved analogs of Retro-2 can inhibit infection at lower dosages than Retro-2 and further optimization of these compounds may lead to effective treatment options for those suffering from JCPyV infection and PML.


Assuntos
Benzamidas/farmacologia , Vírus JC/efeitos dos fármacos , Infecções por Polyomavirus/tratamento farmacológico , Tiofenos/farmacologia , Animais , Vírus BK/efeitos dos fármacos , Chlorocebus aethiops , Humanos , Leucoencefalopatia Multifocal Progressiva/virologia , Polyomavirus/efeitos dos fármacos , Vírus 40 dos Símios/efeitos dos fármacos , Células Vero
5.
Antiviral Res ; 179: 104819, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32389733

RESUMO

During virus entry, members of the Polyomaviridae transit the endolysosomal network en route to the endoplasmic reticulum (ER), from which degraded capsids escape into the cytoplasm and enter the nucleus. Emerging evidence suggests that viruses require both endosomal acidification and the correct ionic balance of K+ and Ca2+ ions in endosomes for correct virus trafficking and genome release. Here, using two polyomaviruses with different capsid architectures, namely Simian virus 40 (SV40) and Merkel cell polyomavirus (MCPyV), we describe methods to rapidly quantify virus infection using IncuCyte ZOOM imaging analysis, and use this system to investigate the role of both K+ and Ca2+ channels during the early stages of virus entry. Using broad spectrum blockers of both K+ and Ca2+ channels to specifically target host cell ion channel functionality, we show that MCPyV, but not SV40 can be inhibited by K+ channel modulators, whilst both viruses are restricted by the broad spectrum Ca2+ channel inhibitor verapamil. Using a panel of more specific Ca2+ blockers, we show that both MCPyV and SV40 are dependent on the activity of two-pore Ca2+ channels (TPCs), as the TPC-specific blocker tetrandrine prevented capsid disassembly and nuclear transport required for virus entry. We therefore reveal a novel target to restrict the entry of polyomaviruses, which given the known role of TPCs during endolysosomal-ER fusion, is likely to be applicable to other viruses that transit this pathway.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Endossomos/fisiologia , Polyomavirus/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Internalização do Vírus/efeitos dos fármacos , Animais , Benzilisoquinolinas/farmacologia , Linhagem Celular , Movimento Celular , Chlorocebus aethiops , Descoberta de Drogas , Endossomos/virologia , Células HEK293 , Humanos , Poliomavírus das Células de Merkel/efeitos dos fármacos , Poliomavírus das Células de Merkel/fisiologia , Polyomavirus/fisiologia , Vírus 40 dos Símios/efeitos dos fármacos , Vírus 40 dos Símios/fisiologia , Verapamil/farmacologia , Células Vero
6.
Antiviral Res ; 159: 122-129, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30287227

RESUMO

The search for new compounds with a broad spectrum of antiviral activity is important and requires the evaluation of many compounds against several distinct viruses. Researchers attempting to develop new antiviral therapies for DNA virus infections currently use a variety of cell lines, assay conditions and measurement methods to determine in vitro drug efficacy, making it difficult to compare results from within the same laboratory as well as between laboratories. In this paper, we describe the assessment of antiviral activity of a set of nucleoside analogs against BK polyomavirus, JC polyomavirus, Epstein-Barr virus, human herpesvirus 6B, and human herpesvirus 8 in an automated 384-well format and utilize qPCR assays to measure the accumulation of viral DNA. In an accompanying paper, we present a standardized approach to evaluating antivirals against additional herpesviruses, orthopoxviruses, and adenovirus. Together, they reveal new activities for reference compounds and help to define the spectrum of antiviral activity for a set of nucleoside analogs against a set of 12 DNA viruses that infect humans including representative human herpesviruses, orthopoxviruses, adenoviruses, and polyomaviruses. This analysis helps provide perspective on combinations of agents that would help provide broad coverage of significant pathogens in immunocompromised patients as well as against emerging infections.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas/normas , Herpesviridae/efeitos dos fármacos , Nucleosídeos/farmacologia , Polyomavirus/efeitos dos fármacos , Automação Laboratorial , DNA Viral/análise , Descoberta de Drogas/métodos , Humanos , Replicação Viral/efeitos dos fármacos
7.
Bioorg Med Chem Lett ; 26(20): 5087-5091, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27624078

RESUMO

Human polyomaviruses are generally latent but can be reactivated in patients whose immune systems are suppressed. Unfortunately, current therapeutics for diseases associated with polyomaviruses are non-specific, have undefined mechanisms of action, or exacerbate the disease. We previously reported on a class of dihydropyrimidinones that specifically target a polyomavirus-encoded protein, T antigen, and/or inhibit a cellular chaperone, Hsp70, that is required for virus replication. To improve the antiviral activity of the existing class of compounds, we performed Biginelli and modified multi-component reactions to obtain new 3,4-dihydropyrimidin-2(1H)-ones and -thiones for biological evaluation. We also compared how substituents at the N-1 versus N-3 position in the pyrimidine affect activity. We discovered that AMT580-043, a N-3 alkylated dihydropyrimidin-2(1H)-thione, inhibits the replication of a disease-causing polyomavirus in cell culture more potently than an existing drug, cidofovir.


Assuntos
Antivirais/farmacologia , Polyomavirus/efeitos dos fármacos , Pirimidinonas/farmacologia , Animais , Antivirais/química , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Pirimidinonas/química , Relação Estrutura-Atividade
8.
Antiviral Res ; 114: 21-46, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25446403

RESUMO

Acyclic nucleoside phosphonates (ANPs) are well-known for their antiviral properties, three of them being approved for the treatment of human immunodeficiency virus infection (tenofovir), chronic hepatitis B (tenofovir and adefovir) or human cytomegalovirus retinitis (cidofovir). In addition, cidofovir is mostly used off-label for the treatment of infections caused by several DNA viruses other than cytomegalovirus, including papilloma- and polyomaviruses, which do not encode their own DNA polymerases. There is considerable interest in understanding why cidofovir is effective against these small DNA tumor viruses. Considering that papilloma- and polyomaviruses cause diseases associated either with productive infection (characterized by high production of infectious virus) or transformation (where only a limited number of viral proteins are expressed without synthesis of viral particles), it can be envisaged that cidofovir may act as antiviral and/or antiproliferative agent. The aim of this review is to discuss the advances in recent years in understanding the mode of action of ANPs as antiproliferative agents, given the fact that current data suggest that their use can be extended to the treatment of non-viral related malignancies.


Assuntos
Antineoplásicos/farmacologia , Antivirais/farmacologia , Citosina/análogos & derivados , Neoplasias/tratamento farmacológico , Organofosfonatos/farmacologia , Papillomaviridae/efeitos dos fármacos , Polyomavirus/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Antivirais/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cidofovir , Citosina/farmacologia , Citosina/uso terapêutico , Humanos , Organofosfonatos/uso terapêutico , Papillomaviridae/genética , Papillomaviridae/fisiologia , Infecções por Papillomavirus/tratamento farmacológico , Infecções por Papillomavirus/virologia , Polyomavirus/genética , Polyomavirus/fisiologia , Infecções por Polyomavirus/tratamento farmacológico , Infecções por Polyomavirus/virologia , Proteína Supressora de Tumor p53
9.
Bioorg Med Chem ; 22(22): 6490-6502, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25440730

RESUMO

Polyomavirus infections are common and relatively benign in the general human population but can become pathogenic in immunosuppressed patients. Because most treatments for polyomavirusassociated diseases nonspecifically target DNA replication, existing treatments for polyomavirus infection possess undesirable side effects. However, all polyomaviruses express Large Tumor Antigen (T Ag), which is unique to this virus family and may serve as a therapeutic target. Previous screening of pyrimidinone­peptoid hybrid compounds identified MAL2-11B and a MAL2-11B tetrazole derivative as inhibitors of viral replication and T Ag ATPase activity (IC50 of ~20-50 µM. To improve upon this scaffold and to develop a structure­activity relationship for this new class of antiviral agents, several iterative series of MAL2-11B derivatives were synthesized. The replacement of a flexible methylene chain linker with a benzyl group or, alternatively, the addition of an ortho-methyl substituent on the biphenyl side chain in MAL2-11B yielded an IC50 of 50 µM, which retained antiviral activity. After combining both structural motifs, a new lead compound was identified that inhibited T Ag ATPase activity with an IC50 of 50 µM. We suggest that the knowledge gained from the structure­activity relationship and a further refinement cycle of the MAL2-11B scaffold will provide a specific, novel therapeutic treatment option for polyomavirus infections and their associated diseases.


Assuntos
Antígenos Virais de Tumores/química , Antivirais/síntese química , Vírus 40 dos Símios/metabolismo , Bibliotecas de Moléculas Pequenas/química , Antígenos Virais de Tumores/metabolismo , Antivirais/farmacologia , Antivirais/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Peptoides/química , Polyomavirus/efeitos dos fármacos , Ligação Proteica , Pirimidinonas/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
10.
Expert Rev Anti Infect Ther ; 12(10): 1171-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25120093

RESUMO

CMX001 (hexadecyloxypropyl-cidofovir, Brincidofovir) is a broad spectrum, lipid conjugate of cidofovir that is converted intracellularly into the active antiviral, cidofovir diphosphate. The lipid conjugation results in oral bioavailability, higher intracellular concentrations of active drug, lower plasma concentrations of cidofovir and increased antiviral potency against dsDNA viruses.


Assuntos
Antivirais/uso terapêutico , Citosina/análogos & derivados , Infecções por Vírus de DNA/tratamento farmacológico , Organofosfonatos/uso terapêutico , Adenoviridae/efeitos dos fármacos , Antivirais/química , Antivirais/farmacologia , Citomegalovirus/efeitos dos fármacos , Citosina/química , Citosina/farmacologia , Citosina/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Vírus do Molusco Contagioso/efeitos dos fármacos , Organofosfonatos/química , Organofosfonatos/farmacologia , Orthopoxvirus/efeitos dos fármacos , Polyomavirus/efeitos dos fármacos
11.
Curr Treat Options Oncol ; 14(2): 249-63, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23436166

RESUMO

Merkel cell carcinoma (MCC) is a rare but aggressive neuroendocrine skin cancer with a disease-specific mortality of approximately 40 %. The association of MCC with a recently discovered polyomavirus, combined with the increased incidence and mortality of MCC among immunocompromised patients, highlight the importance of the immune system in controlling this cancer. Initial management of MCC is summarized within the NCCN guidelines and in recently published reviews. The high rate of recurrent and metastatic disease progression in MCC, however, presents a major challenge in a cancer that lacks mechanism-based, disease-specific therapies. Traditional treatment approaches have focused on cytotoxic chemotherapy that, despite frequent initial efficacy, rarely provides durable responses and has high morbidity among the elderly. In addition, the immunosuppressive nature of chemotherapy is of concern when treating a virus-associated cancer for which survival is unusually tightly linked to immune function. With a median survival of 9.6 months after development of an initial metastasis (n = 179, described herein), and no FDA-approved agents for this cancer, there is an urgent need for more effective treatments. We review diverse management options for patients with advanced MCC, with a focus on emerging and mechanism-based therapies, some of which specifically target persistently expressed viral antigens. These treatments include single-dose radiation and novel immunotherapies, some of which are in clinical trials. Due to their encouraging efficacy, low toxicity, and lack of immune suppression, these therapies may offer viable alternatives to traditional cytotoxic chemotherapy.


Assuntos
Carcinoma de Célula de Merkel/terapia , Neoplasias Cutâneas/terapia , Carcinoma de Célula de Merkel/radioterapia , Carcinoma de Célula de Merkel/virologia , Ensaios Clínicos como Assunto , Progressão da Doença , Humanos , Imunoterapia/métodos , Metástase Neoplásica/radioterapia , Metástase Neoplásica/terapia , Recidiva Local de Neoplasia/mortalidade , Recidiva Local de Neoplasia/radioterapia , Recidiva Local de Neoplasia/terapia , Polyomavirus/efeitos dos fármacos , Infecções por Polyomavirus/complicações , Infecções por Polyomavirus/terapia , Prognóstico , Ensaios Clínicos Controlados Aleatórios como Assunto , Neoplasias Cutâneas/radioterapia , Neoplasias Cutâneas/virologia , Infecções Tumorais por Vírus/complicações , Infecções Tumorais por Vírus/terapia
12.
Biologicals ; 41(2): 63-70, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23116715

RESUMO

Polyomavirus inactivation has been studied since the 1950s when it became apparent that certain polio vaccines were contaminated with SV40. Relatively high temperatures (≥70 °C) are required to effect thermal inactivation of the polyomaviruses. The chemical inactivants that are effective (ß-propiolactone, ethanol, sodium hydroxide, and formaldehyde) are those that have displayed efficacy for other small, non-enveloped viruses, such as the circoviruses. Low pH inactivation can be effective, especially at pH at or below 3 and at higher temperatures. Polyomaviruses are more resistant to UV-C irradiation than are other small non-enveloped viruses such as the parvoviruses and caliciviruses. The efficacy of photodynamic inactivation of polyomaviruses is very much dye-dependent, with toluidine blue, acridine orange, and methylene blue dyes being effective photosensitizers. Ionizing radiation can be effective, depending on the conditions employed and the inactivation matrix. Inactivation of the oncogenic properties of the polyomaviruses may require higher doses of inactivant than those required to inactivate infectivity. While the polyomaviruses are considered to be highly resistant to inactivation, the degree of resistance is dependent upon the specific approach under consideration. For certain approaches, such as UV-C and gamma-irradiation, the polyomaviruses appear to be more resistant than other small non-enveloped viruses.


Assuntos
Polyomavirus/efeitos dos fármacos , Polyomavirus/efeitos da radiação , Inativação de Vírus/efeitos dos fármacos , Inativação de Vírus/efeitos da radiação , Animais , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos da radiação , Humanos , Polyomavirus/fisiologia , Infecções por Polyomavirus/virologia , Infecções Tumorais por Vírus/virologia
13.
PLoS One ; 7(11): e49226, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23139839

RESUMO

Novel biomaterials based on hydrophilic polycaprolactone and polyurethane (Tecophilic®) nanofibers with an encapsulated 5,10,5,20-tetraphenylporphyrin photosensitizer were prepared by electrospinning. The doped nanofiber textiles efficiently photo-generate O(2)((1)Δ(g)), which oxidize external chemical and biological substrates/targets. Strong photo-virucidal effects toward non-enveloped polyomaviruses and enveloped baculoviruses were observed on the surface of these textiles. The photo-virucidal effect was confirmed by a decrease in virus infectivity. In contrast, no virucidal effect was detected in the absence of light and/or the encapsulated photosensitizer.


Assuntos
Antivirais/farmacologia , Nanofibras/química , Fármacos Fotossensibilizantes/farmacologia , Oxigênio Singlete/metabolismo , Têxteis , Animais , Antracenos/química , Baculoviridae/efeitos dos fármacos , Capsídeo/química , Camundongos , Nanofibras/ultraestrutura , Oxirredução , Poliésteres/química , Polyomavirus/efeitos dos fármacos , Poliuretanos/química , Porfirinas/farmacologia , Recombinação Genética/genética , Inativação de Vírus/efeitos dos fármacos
14.
Appl Environ Microbiol ; 78(22): 8146-50, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22961900

RESUMO

Agrochemicals, fecal indicator bacteria (FIB), and pathogens frequently contaminate water simultaneously. No significant direct effects of fertilizer, atrazine, malathion, and chlorothalonil on the survival of Escherichia coli, Enterococcus faecalis, Salmonella enterica, human polyomaviruses, and adenovirus were detected, supporting the assertion that previously observed effects of agrochemicals on FIB were indirect.


Assuntos
Agroquímicos/metabolismo , Fezes/microbiologia , Viabilidade Microbiana/efeitos dos fármacos , Adenoviridae/efeitos dos fármacos , Atrazina/metabolismo , Enterococcus faecalis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Malation/metabolismo , Nitrilas/metabolismo , Polyomavirus/efeitos dos fármacos , Salmonella enterica/efeitos dos fármacos , Microbiologia da Água
15.
Biomacromolecules ; 13(6): 1724-32, 2012 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-22475261

RESUMO

Mucus is a porous biopolymer matrix that coats all wet epithelia in the human body and serves as the first line of defense against many pathogenic bacteria and viruses. However, under certain conditions viruses are able to penetrate this infection barrier, which compromises the protective function of native mucus. Here, we find that isolated porcine gastric mucin polymers, key structural components of native mucus, can protect an underlying cell layer from infection by small viruses such as human papillomavirus (HPV), Merkel cell polyomavirus (MCV), or a strain of influenza A virus. Single particle analysis of virus mobility inside the mucin barrier reveals that this shielding effect is in part based on a retardation of virus diffusion inside the biopolymer matrix. Our findings suggest that purified mucins may be used as a broad-range antiviral supplement to personal hygiene products, baby formula or lubricants to support our immune system.


Assuntos
Antivirais/farmacologia , Biopolímeros/farmacologia , Mucinas Gástricas/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Papillomaviridae/efeitos dos fármacos , Polyomavirus/efeitos dos fármacos , Animais , Antivirais/química , Biopolímeros/química , Células Cultivadas , Mucinas Gástricas/química , Células HeLa , Humanos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Testes de Sensibilidade Microbiana , Porosidade , Relação Estrutura-Atividade , Propriedades de Superfície , Suínos , Viscosidade
16.
Biologicals ; 40(4): 282-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22424718

RESUMO

Looking for a robust and simple method to replace formaldehyde fumigation for the disinfection of virus-handling laboratories and facilities, we tested peracetic acid fogging as a method to inactivate stable viruses under practical conditions. Peracetic acid/hydrogen peroxide (5.8%/27.5%, 2.0 mL/m³) was diluted in sufficient water to achieve ≥ 70% relative humidity and was vaporized as <10 µm droplets in a fully equipped 95 m³ laboratory unit. High titers of reovirus 3, MVM parvovirus and an avian polyomavirus were coated on frosted glass carriers and were exposed to the peracetic acid fog in various positions in the laboratory. After vaporization, a 60 min exposure time, and venting of the laboratory, no residual virus was detected on any of the carriers (detection limit <1 infectious unit/sample volume tested). The log reduction values were 9.0 for reovirus, 6.4 for MVM parvovirus, and 7.65 for the polyomavirus. After more than 10 disinfection runs within 12 months, no damage or functional impairment of electrical and electronic equipment was noted.


Assuntos
Ácido Peracético/farmacologia , Polyomavirus/efeitos dos fármacos , Inativação de Vírus , Animais , Técnicas de Cultura de Células
17.
Virus Res ; 151(2): 244-5, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20580755

RESUMO

This short communication shows how the application of simple mathematical formulae allows researchers to extract maximum information from viral growth efficiency studies at virtually no additional costs (in terms of time or money), thus improving the comparability of results (growth rates, replicative capacities, efficacies of antivirals) between in vitro and in vivo growth efficiency studies. This could help in elucidating kinetic links between the molecular basis of virus function and clinical findings.


Assuntos
Infecções por Polyomavirus/virologia , Polyomavirus/crescimento & desenvolvimento , Carga Viral , Replicação Viral , Animais , Chlorocebus aethiops , Humanos , Modelos Teóricos , Polyomavirus/efeitos dos fármacos , Polyomavirus/isolamento & purificação , Polyomavirus/patogenicidade , Urina/virologia , Células Vero , Virulência
18.
Avian Pathol ; 39(2): 111-6, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20390545

RESUMO

Haemorrhagic nephritis enteritis of the goose (HNEG) is an epizootic viral disease in domestic geese. The causal agent is a polyomavirus, namely goose haemorrhagic polyomavirus. To help control the disease, an inactivated vaccine was developed, based on viral particles produced in goose kidney cells. Viral material was quantified using real-time quantitative polymerase chain reaction, inactivated with beta-propiolactone and adjuvanted with Carbopol, an acrylic acid polymer. Carbopol proved to be more immunogenic than aluminium hydroxide and was totally safe when administered to young goslings and breeders alike. Carbopol-adjuvanted vaccine induced a high serological response. Moreover, goslings hatched from vaccinated breeders were protected against viral challenge, indicating that maternally-derived neutralizing antibodies (MDA) were efficiently transferred. MDA were still detectable 15 days post-hatch. Clinical trials will be necessary to accurately evaluate a vaccine-based HNEG control strategy under field conditions.


Assuntos
Adjuvantes Imunológicos/farmacologia , Gansos/imunologia , Infecções por Polyomavirus/veterinária , Polyomavirus/imunologia , Polivinil/farmacologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Virais/imunologia , Resinas Acrílicas , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais/imunologia , DNA Viral/genética , Feminino , Rim/citologia , Rim/virologia , Polyomavirus/efeitos dos fármacos , Polyomavirus/genética , Infecções por Polyomavirus/imunologia , Infecções por Polyomavirus/prevenção & controle , Doenças das Aves Domésticas/imunologia , Propiolactona/farmacologia , Vacinas de Produtos Inativados/efeitos adversos , Vacinas de Produtos Inativados/imunologia , Vacinas Virais/efeitos adversos , Vírion/imunologia
19.
J R Soc Interface ; 7(44): 409-21, 2010 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19625304

RESUMO

Viral self-assembly is of tremendous virological and biomedical importance. Although theoretical and crystallographic considerations suggest that controlled conformational change is a fundamental regulatory mechanism in viral assembly, direct proof that switching alters the thermodynamic attraction of self-assembling components has not been provided. Using the VP1 protein of polyomavirus, we report a new method to quantitatively measure molecular interactions under conditions of rapid protein self-assembly. We show, for the first time, that triggering virus capsid assembly through biologically relevant changes in Ca(2+) concentration, or pH, is associated with a dramatic increase in the strength of protein molecular attraction as quantified by the second virial coefficient (B(22)). B(22) decreases from -2.3 x 10(-4) mol ml g(-2) (weak protein-protein attraction) to -2.4 x 10(-3) mol ml g(-2) (strong protein attraction) for metastable and Ca(2+)-triggered self-assembling capsomeres, respectively. An assembly-deficient mutant (VP1CDelta63) is conversely characterized by weak protein-protein repulsion independently of chemical change sufficient to cause VP1 assembly. Concomitant switching of both VP1 assembly and thermodynamic attraction was also achieved by in vitro changes in ammonium sulphate concentration, consistent with protein salting-out behaviour. The methods and findings reported here provide new insight into viral assembly, potentially facilitating the development of new antivirals and vaccines, and will open the way to a more fundamental physico-chemical description of complex protein self-assembly systems.


Assuntos
Cálcio/fisiologia , Proteínas do Capsídeo/fisiologia , Polyomavirus/fisiologia , Montagem de Vírus/fisiologia , Sulfato de Amônio/farmacologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Concentração de Íons de Hidrogênio , Modelos Biológicos , Polyomavirus/efeitos dos fármacos , Polyomavirus/ultraestrutura , Estrutura Terciária de Proteína , Termodinâmica
20.
J Exp Clin Cancer Res ; 28: 96, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19570215

RESUMO

BACKGROUND: Resveratrol is a non flavonoid polyphenol compound present in many plants and fruits and, at especially high concentrations, in the grape berries of Vitis vinifera. This compound has a strong bioactivity and its cytoprotective action has been demonstrated, however at high concentrations the drug exhibits also an effective anti-proliferative action. We recently showed its ability to abolish the effects of oxidative stress in cultured cells. In this work we assayed the bioactivity of resveratrol as antiproliferative and antiviral drug in cultured fibroblasts. Studies by other Authors showed that this natural compound inhibits the proliferation of different viruses such as herpes simplex, varicella-zoster and influenza A. The results presented here show an evident toxic activity of the drug at high concentrations, on the other hand at sub-cytotoxic concentrations, resveratrol can effectively inhibit the synthesis of polyomavirus DNA. A possible interpretation is that, due to the damage caused by resveratrol to the plasma membrane, the transfer of the virus from the endoplasmic reticulum to the nucleus, may be hindered thus inhibiting the production of viral DNA. METHODS: The mouse fibroblast line 3T6 and the human tumor line HL60 were used throughout the work. Cell viability and vital cell count were assessed respectively, by the MTT assay and Trypan Blue staining. Cytotoxic properties and evaluation of viral DNA production by agarose gel electrophoresis were performed according to standard protocols. RESULTS: Our results show a clear dose dependent both cytotoxic and antiviral effect of resveratrol respectively at high and low concentrations. The cytotoxic action is exerted towards a stabilized cell-line (3T6) as well as a tumor-line (HL60). Furthermore the antiviral action is evident after the phase of virion entry, therefore data suggest that the drug acts during the synthesis of the viral progeny DNA. CONCLUSION: Resveratrol is cytotoxic and inhibits, in a dose dependent fashion, the synthesis of polyomavirus DNA in the infected cell. Furthermore, this inhibition is observed at non cytotoxic concentrations of the drug. Our data imply that cyto-toxicity may be attributed to the membrane damage caused by the drug and that the transfer of polyomavirus from the endoplasmic reticulum to the cytoplasm may be hindered. In conclusion, the cytotoxic and antiviral properties of resveratrol make it a potential candidate for the clinical control of proliferative as well as viral pathologies.


Assuntos
Anticarcinógenos/farmacologia , Antivirais/farmacologia , Proliferação de Células/efeitos dos fármacos , Polyomavirus/efeitos dos fármacos , Estilbenos/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Células Cultivadas , DNA Viral/genética , DNA Viral/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Células HL-60 , Humanos , Camundongos , Polyomavirus/genética , Infecções por Polyomavirus/tratamento farmacológico , Infecções por Polyomavirus/metabolismo , Infecções por Polyomavirus/virologia , Resveratrol , Infecções Tumorais por Vírus/tratamento farmacológico , Infecções Tumorais por Vírus/metabolismo , Infecções Tumorais por Vírus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...